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Abstract: Accurate estimation of the state of charge (SOC) of Li-ion battery can ensure the reliability of the

storage system. A combined estimator of online full-parameter identification and adaptive unscented particle

filter for Li-ion battery SOC based on an improved fractional-order model is proposed, which overcomes the

shortcomings of the traditional SOC cumulative error and the difficulty of OCV acquisition. The proposed

adaptive fractional unscented particle filter algorithm introduces fractional parameters as hidden parameters and

reduces the complexity of the algorithm iteration by reducing the number of particles. At the same time, the

noise adaptive algorithm based on the residual sequence can solve the divergence problem of the filter and

improve the adaptability of the algorithm. To verify the feasibility of the algorithm under complex operating

conditions, the urban dynamometer driving schedule dynamic working conditions of Li-ion batteries are verified.

The experimental results show that the evaluation index of the algorithm is the best, the RMSE is 0.67%, and

the SOC estimation is more accurate. It shows that the algorithm has strong robustness and fast convergence.

Key words: Li-ion battery; Improve fractional-order equivalent circuit model; Full-parameter identification; State of

charge;Adaptive fractional-order unscented particle filter;
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1. Introduction

With the breakthrough of energy storage technology, the global energy structure dominated by traditional

energy is undergoing revolutionary changes [1]. Li-ion batteries are widely used in the fields of power supply,

high-efficiency energy storage and backup power supply due to their high energy density, long cycle life, safety

and pollution-free advantages, and become one of the effective ways to solve the problem of electrical energy

storage [2]. Li-ion batteries are used as energy storage components to realize the conversion of chemical energy

and electric energy through chemical reactions [3]. Battery management system (BMS) can monitor the

performance of the battery in real-time to prevent the irreversible effects of over-charge and over-discharge on

battery life. However, there are problems of inaccurate remaining time prediction caused by imperfect state

estimation[4], as well as potential safety hazards such as thermal management [5] and energy imbalance [6].

Since SOC cannot be directly measured in practical applications, how to explore new battery modeling methods

and state estimation methods has become the focus of attention in academics and industry [7].

Accurate modeling of Li-ion batteries is an indispensable part of BMS, and it is also the basis of accurate

estimating of battery SOC [8]. The equivalent circuit model (ECM) is currently the most widely used. [9].

Because the battery voltage changes rapidly at the beginning and end of charging and discharging, it is difficult
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to accurately simulate the strong nonlinearity of the battery through ECM. In n-order RC, ECMs can improve

their accuracy by increasing the number of RC network modules, but this will make the model structure more

complex, greatly increase the amount of calculation, and bring difficulties to model parameter identification and

practical applications [10]. Due to the strong fractional characteristic of the capacitors, some researchers have

begun to pay attention to the application of fractional capacitors in battery modeling [11, 12]. Hu et al. [13]

introduced the constant phase element (CPE) from the perspective of the frequency domain, which proved that

the fractional-order model (FOM) of power battery based on fractional calculus theory is more accurate. Jin et al.

[14] compared the SOC estimation accuracy of dual polarization model (DPM) and FOM under different

working conditions, and demonstrated the estimation error based on FOM is always less than that of DPM.

Since the FOM has higher accuracy than the integer-order model (IOM) in theory, some scholars have begun to

study the SOC estimation algorithm based on FOM [15, 16]. In ref. [17], Xu et al. proposed two FOMs-based

dual Kalman filter (DKF) and dual extended Kalman filter (DEKF) methods to estimate the accuracy of the
SOC, which proved the robustness and adaptability of the algorithm, but there is a linear cut-off error. In ref.

[18], Tian et al. measured the SOC estimation performance under different temperature and aging conditions 

based on fractional-order unscented Kalman filter (FOUKF), which verified the accuracy of the model and the 

effectiveness of the estimation method. However, these two algorithms are usually limited to Gaussian 

distribution [19, 20]. Particle filtering (PF) has unique advantages in processing nonlinear systems that are not 

constrained by assumptions such as noise and models and are gradually becoming a research hotspot [21-25]. 

Nevertheless, there are few PF algorithms based on FOM [26-28]. Li et al. [29] introduced the FOM combined 

with the PF method for SOC estimation, without considering the large SOC estimation error caused by 

insufficient particle diversity and scarcity in the PF algorithm. Wang et al. [30] proposed a SOC estimation 

method that combined PF and fractional-order extended Kalman filter (FOEKF), which has better accuracy and 

fractional real-time performance, but the computational complexity is relatively high.

Most of the aforementioned documents based on FOMs use offline identification methods [31, 32]. Few 

documents consider online real-time estimation of FOM parameters [33, 34]. Due to the introduction of 

fractional calculus, how to determine the differential order α and realize the online identification of other 

parameters is a technical difficulty [35-37]. The existing literature lacks research and analysis on the online joint 

estimation of fractional parameters and SOC. Although the SOC estimation method proposed in [38] takes into 

account the fractional characteristics of the battery and had a high estimation accuracy, it did not consider the 

influence of noise interference [39, 40]. Therefore, a combined estimator of online full-parameter identification 

and adaptive unscented particle filter for Li-ion battery SOC based on an improved FOM is proposed, which not 

only solves the shortcomings of the PF algorithm but also solves the problem of filter divergence and improves 

the adaptability of the algorithm. Furthermore, the closed-loop estimation formed by online full-parameters 

identification and SOC combined estimation can significantly improve the accuracy of SOC.
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2. Mathematical analysis

2.1. Fractional calculus

The Grünwald-Letnikov (G-L) definition can directly discretize the fractional differential equation, as shown

in Eq. (1). Through the transformation relationship of the above Equation, the application field of fractional

calculus defined by G-L can be extended from a positive integer field to a real number field.

0[( )/ ]

0 0

( ) lim ( 1) ( )
jt t h

a a
t h j

a
f t h f t jh
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 ........................................................ (1)

Where ��
��(�) represents a first-order differential of �(�),



α represents the differential order, h is the sampling

period, ��
� = −1 �

�
� indicates the weighted coefficients, the Newton binomial coefficient �

� can be

expressed as shown in Eq. (2).
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...........................................................(2)

2.2. Equivalent modeling

To overcome the shortcomings of traditional OCV acquisition difficulties，the ideal voltage source of 

FOM is regarded as a controlled current source related to SOC, and the relationship between the controlled 

current source and SOC is related to SOC-OCV. OCV is a dynamic parameter that changes with time, so the 

proposed model has high accuracy during the whole cycle of the battery. The improved FOM is shown in Fig 1. 

As a bridge between the two parts, the nonlinear relationship between OCV and SOC is critical in BMS because 

it is an important way to calibrate the Ampere-hour (Ah) integral method.

Fig1. Runtime-based fractional-order battery model

The model consists of a run-time circuit and FOM, the left part contains a capacitor CQ represents the battery

available capacity, a self-discharge resistor RQ, and a current control current source I. The right part of the model

is similar to the Thevenin model, where R0 is the internal resistance, Rp is the polarization resistance, and CPE is

a constant phase element, whose fractional order is denoted as α. UL is terminal voltage, UOC is the open-circuit

voltage, which is a function of SOC, defined in Eq. (3). K0, K1, K2, K3, and K4 are the undetermined coefficients.

     0 1 2 3 4( ) / ( ) ln ln 1OCU K K SOC k K SOC k K SOC k K SOC k      .................................. (3)

The mathematical derivation of the battery model is shown in Eq. (4). CQ is defined as a function of the
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nominal capacity Qnom of the battery, f1 (Cycle) and f2 (Temp) are defined as correction coefficients for battery

cycle life and temperature. The influence of temperature and cycle life on battery capacity is ignored.

1 23600. . ( ). ( )Q nomC Q f Cycle f Temp ..................................................................... (4)

CPE has an attribute between resistance and capacitance, as shown in Eq. (5), Where C1 is the impedance

coefficient.

1

1
CPE aZ

C S
 ...................................................................................(5)

The differential expression of the SOC expression is defined as shown in Eq. (6), � represents the

charge-discharge current ratio.

   1

3600 Q

I t
D SOC t

C


  ..............................................................................(6)

According to Kirchhoff's law, the voltage can be expressed as shown in Eq. (7). The second equation is a

differential equation for the parallel circuit voltage.
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Using the definition of G-L, the state space equation is discretized, and the discretized state space equation is

obtained as shown in Eq. (8).
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2.3. Parameter identification

The particle swarm optimization algorithm is used to obtain the differential order α, and the remaining

parameters are identified based on the forgetting factor recursive least square method. The impedance transfer

function of FOM is defined as shown in Eq. (9).
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......................................................(9)

Based on G-L, the above equation can be discretized as shown in Eq. (10).
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The memory length is truncated and converted to a first-order difference equation, as shown in Eq. (11).

0
1 0 1( ) ( 1) ( ) ( ) ( 1)

a
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The optimal estimated parameters can be obtained through FFRLS as shown in Eq. (12).
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The parameters values to be identified are further obtained shown in Eq. (13).
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According to the bilinear change, the full-parameter identification formula is obtained as shown in Eq. (14).

     , 1 0 1 2 3 4 1 , 1 2 3 11 ( / ln ln 1 )L k k k k k L k k kU a K K SOC K SOC K SOC K SOC aU a I a I           .
.................................................................................(14)

shown in Eq. (15), �� are the parameters to beDefine �� as the known input and output vectors are 

undetermined shown in Eq. (16).

  , 1 , , 11 1 ln ln 1k k k k k L k L k L kSOC SOC SOC SOC U I I        .................................. (15)

         1 0 1 1 1 2 1 3 1 4 1 2 31 1 1 1 1k a k a k a k a k a k a a a         .................................. (16)

The implementation process of full-parameter identification based on FFRLS is shown in Tab 1.

Tab 1 Model full-parameter identification process based on FFRLS

(1) Parameter identification of OCV model (2) Parameter identification of battery model

(a) Initialization
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(c) Calculate the error �1,� and update model parameter ��1,�
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3. Adaptive fractional-order unscented particle filter algorithm

3.1 Adaptive fractional-order unscented Kalman filter algorithm

FOUKF is a filtering algorithm based on unscented transformation. In the process of state update and 

measurement update, the UT transformation uses sampling points to approximate the probability distribution of 

state variables and completes the transfer of the statistical mean and covariance of random variables. The 

sample points of FOUKF include the memory effect of FOM on past time. The optimal estimation of the last 

state is added for time update and prior estimation so that the state vector contains the statistical information of 

the past time. Therefore, compared with UKF, FOUKF can estimate the battery status more accurately. Fig.2 

shows the flow chart of SOC estimation based on AFOUKF.

Fig 2 The flow chart of SOC estimation based on residual sequence adaptive fractional-order unscented Kalman filter

The accuracy of the KF method depends on the reliable process noise and measurement noise. To obtain

accurate state estimation, the residual-based covariance matching technique is applied to monitor and track the

changes of noise, and the parameters are adjusted adaptively to maintain the accuracy of the state estimation.

The residual sequence is defined as the difference between the input measurement and the posterior estimation

measurement, as shown in Eq. (17). The covariance matrix of the residual sequence is shown in Eq. (18).
 ,
i
kk k ky h x u


  .................................................................................(17)
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The measurement error covariance matrix and the process error covariance matrix are obtained as shown in Eq.
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(19), which ensures the positive definiteness of the matrix and solves the filtering divergence problem.

,k k yy k

T
k k

R H P

Q KH K

 


......................................................................... (19)

3.2 Adaptive fractional-order unscented particle filter algorithm

The noise distribution of the FOUKF algorithm must satisfy the Gaussian distribution. The particle filter is 

a non-parametric estimation method based on Monte Carlo and Bayesian estimation, which breaks the noise 

restriction of Gaussian distribution. However, its huge computing burden is still the main obstacle to practical 

applications. Moreover, system performance degradation and sample exhaustion are the main problems of the 

basic sequential importance sampling-resampling particle filter algorithm. An adaptive fractional unscented 

particle filter (AFOUPF) is proposed to overcome the shortcomings of the PF algorithm. AFOUPF is a UPF 

algorithm composed of PF and FOUKF. The flow chart of SOC estimation based on AFOUPF is shown in Fig.3.

Fig 3 The flow chart of the adaptive fractional-order unscented particle filter algorithm

According to the discrete state-space equation of the FOM, the AFOUPF algorithm is used to estimate the

SOC. The AFOUPF algorithm uses UKF to introduce fractional calculus theory to update each particle in the

iteration process and uses the mean value and covariance of the obtained particles to update the new particles in

the next sample, which is closer to the true posterior probability density distribution. The fractional-order

parameters after importance sampling are included as hidden parameters, which can reduce the number of

particles required while obtaining the same estimation accuracy. The summary of the AFOUPF algorithm is

shown in Tab.2.
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Tab 2 The summary of the AFOUPF algorithm

The discrete state-space equation of FOM
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Step 3: Measurement update

(a) Update sigma points

      ( ) ( )k k kk k

i i i
x x n P x n P 

         

(b) Generate the measured value

 


,,

2

,
0

,

k

ii
j kj k k

ni m i
j j k

j

y h x u

y y



 



 

 




(c) Update covariance
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Step 5: Adaptive noise calculation
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(c) Adaptive noise update
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Step 8: Update estimates
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3.3 A combined estimator of online full-parameter identification and SOC estimation

Since the battery model parameters will change with the change of the SOC, the combined estimator based on 

the model parameters and SOC has higher accuracy. However, combined estimators based on FOM are rarely 

implemented. Besides, the influence of non-Gaussian noise in the real environment must be considered. Based

on the aforementioned full-parameter identification and the derivation of AFOUPF algorithm, the combined

estimator can be applied to SOC estimation. This method ensures the high accuracy of the SOC in the whole

cycle, and the adaptive algorithm is based on the residual sequence to overcome the divergence problem that

may occur in the filtering process, which improves the adaptability of the algorithm. The implementation flow

chart of full-parameter identification and SOC combined estimator is shown in Fig. 4.

Fig 4 The combined estimator of full-parameter identification and SOC

The whole process consists of three parts. The first part is to realize the online full-parameters identification.

The second part introduces the fractional-order theory and uses the AFOUKF algorithm to generate the

probability density distribution of the PF algorithm. Finally, the closed-loop feedback of SOC estimation and
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parameter identification is realized. Thus, the adaptive update of model parameters and SOC is realized, which

ensures the convergence speed and accuracy of the algorithm.
4. Experimental analysis

4.1. Experimental working conditions

To verify the accuracy of the battery model and algorithm, the LiFePO4 battery is selected as the experimental

experimental equipment includes battery test equipment (CT-4016-5V100A-NTFA) for voltammetry

a temperature chamber (DGBELL BTT-331C) for temperature control and a host computer for

object. The 

measurements, 

data recording.The entire battery test bench is as shown in Fig. 5.

Fig. 5 The entire battery test bench

The urban dynamometer driving schedule (UDDS) profile is used to verify the reliability and accuracy of the

proposed SOC estimation method, as shown in Fig. 6. Fig.6 (a) and (b) are the current and voltage curves during

the UDDS test.

(a) Dynamic current profile (b) Voltage profiles
Fig. 6 Experimental data of UDDS condition

4.2. Parameter identification results
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Based on the real-time current and voltage data recorded in the UDDS test experiment, the online 

full-parameter identification of FOM is carried out based on the FFRLS algorithm, and the identification results 

of open-circuit voltage, ohmic internal resistance, polarization internal resistance, and CPE are obtained, as 

shown in Fig 7.
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(a) Ohmic internal resistance (b) Open-circuit voltage

(c) Polarization internal resistance (d) Constant phase element
Fig 7 The full-parameter identification results

Fig.7 (a) shows that R0 does not change much throughout the cycle. CPE and Rp tend to increase gradually. The

main reason is that this component represents the effect of charge transfer and double-layer capacitance when

the battery is working. When the SOC is small, the increase of li-ion concentration in the cathode hinders the

subsequent li-ion insertion, which leads to an increase of resistance in the circuit. The coefficients of

open-circuit voltage are shown in Tab 3.

Tab 3 The open-circuit voltage coefficients
K1 K2 K3 K4 K5

2.7800 -1.5611 0.0599 -0.4959 0.0368

4.3. SOC estimation results and verification

4.3.1. Model accuracy verification

To better reflect the accuracy of FOM and the convergence, accuracy, and robustness of the proposed method, 

IOM is chosen as the object of comparison and verification. The comparison between the model output voltage 

and the measured voltage is shown in Fig.8 (a), and the error between the model output voltage and the 

measured voltage is shown in Fig.8 (b).

Page 12 of 22

John Wiley & Sons

International Journal of Energy Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(a) Comparison voltage between the model output and the
measured

(b)Error between the model output voltage and the
measured voltage

Fig 8 Accuracy verification of UDDS

Fig 8 (a) shows that the fitting degree of the output voltage curve of the FOM and the measured voltage curve

is very high, and the values are very close, indicating that the FOM parameter identification result is more

accurate than the IOM. The RMSE is 0.02, and the error between the model voltage and the measured voltage

does not exceed 0.05 V, and the error is relatively large only when the voltage and current change suddenly.

4.3.2. Performance comparison of different SOC estimation methods

To verify the accuracy and reliability of the algorithm, various methods have been selected to further verify the

advantages of the method. The experiment solved the particle degradation problem in the PF algorithm by

increasing the number of particles and selecting a reasonable probability density distribution.

The root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE)

are selected to evaluate the model and state estimation results. The comparison results are shown in Tab 4.
Tab.4 Performance comparison of four algorithms under different sample particle numbers

evaluation

index

Performance comparison of sample particle

numbers and modeling methods

Performance comparison of sample particle 

numbers and probability density distribution

M=100 M=110 M=20 M=50

IOPF FOPF IOPF FOPF IOUPF FOUPF IOUPF FOUPF

RMSE(%) 1.45 1.26 1.35 1.15 1.16 0.86 1.01 0.64

MAPE(%) 2.95 2.45 2.56 2.36 1.66 0.99 1.67 1.00

MAE(%) 1.15 0.95 1.03 0.89 0.66 0.4 0.68 0.4

Under the same estimation method, increasing the number of particles can improve the accuracy of SOC

estimation. For both PF and UPF algorithms, the accuracy of FOM is higher than that of IOM under the same

particle number, which shows the superiority of FOM. The estimation comparison based on four algorithms is

shown in Fig.9.
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(a) Comparison of SOC based on PF with different particle
numbers

(b) Comparison of SOC error based on PF with
different numbers

(c) Comparison of SOC based on UPF with different
particle numbers

(d) Comparison of SOC error based on UPF with
different particle numbers

Fig 9 SOC estimation comparison based on four algorithms

Fig 9 shows that the four algorithms can accurately track changes in SOC, and the FOUPF algorithm has

higher accuracy. When FOUPF has an initial error, the error will stabilize after a period of adaptive adjustment,

which proves that the algorithm can be applied to actual complex working conditions. Since the FOUPF

algorithm integrates the fractional-order theory and considers the past L input and output information of the

system, the result is more accurate. At the same time, the introduction of differential order parameters as hidden

parameters improves the UPF algorithm, which reduces the number of particles and running time while ensuring

estimation accuracy.

Fig 9 shows the SOC estimation result based on offline parameter identification combined with FOUPF. To

further verify the accuracy and superiority of the algorithm combining online full-parameter identification with

AFOUPF, the following experimental verification is carried out.

4.3.3. SOC estimation results of online full-parameter identification based on unscented particle filter

The algorithm improves the suboptimal density function of the PF algorithm by fusing FOUKF, and adds the
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noise adaptive algorithm, which effectively suppresses the noise in the battery estimation process, improves the 

accuracy and reduces the impact of noise. The online full-parameter identification and the SOC combined 

estimator promote the improvement of battery SOC estimation accuracy, and the real-time update of the SOC 

value makes all parameters have higher accuracy throughout the cycle. Fig.10 shows the SOC comparison
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results of the two algorithms when M=20.

(a) Comparison of SOC based on two algorithms (b) Comparison of SOC error based on two algorithms

(c) Comparison of voltage based on two algorithms (d) Comparison of voltage error based on two algorithms
Fig 10 Performance comparison based on two algorithms

Fig 10 shows that both algorithms can track changes in SOC very well, indicating the correctness of the 

algorithm applied to SOC estimation. Even if the error is large at the beginning and end of the cycle, the 

algorithm based on online full-parameter identification has better tracking effect and higher estimation accuracy 

in the whole cycle. The results show that the adaptive update of model parameters and SOC can significantly 

reduce the SOC estimation error and obtain higher estimation accuracy.

The RMSE of the algorithm is 0.67%, the MAPE and the MAE are 0.82%, 0.33% respectively, and the 

performance evaluation index is better than that in [41] and [30]. In ref.[41], the average error of the AFOEKF 

algorithm is 1.37%, which is lower than that of FOEKF and AIOEKF algorithms under the same conditions, 

indicating the necessity of FOM and noise adaptive algorithms. In ref [30], Wang et al proposed a method of

estimating SOC by combining the particle filter and the fractional Kalman filter. Set M=500, which will lead to

higher computational complexity. The experimental results show that the estimation error is less than 1% under

the condition of constant current, and less than 4% under the condition of variable current.

Therefore, the combined algorithm proves that the adaptive adjustment of the process noise covariance and the

observation noise covariance can significantly improve SOC estimation results. The results show that the MAE,

RMSE, and MAPE of the SOC obtained by the combined estimation algorithm are the smallest, indicating that

the online full-parameters identification is required to improve the accuracy of SOC estimation results.
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5. Conclusions

A combined estimator of online full-parameter identification and adaptive unscented particle filter for Li-ion

battery SOC is proposed based on an improved fractional-order model. Firstly, the iterative complexity of the

algorithm is reduced by reducing the number of particles. Secondly, the adaptive algorithm based on residual

sequence can solve the divergence problem and improve the adaptability of the algorithm. At the same time,

online full-parameter identification can solve the problem of the large estimation error of traditional algorithm

in low SOC intervals and high SOC intervals, and overcome the shortcomings of long cumulative error and long

experimental time. Finally, the closed-loop feedback of SOC estimation and parameter identification is realized,

which ensures the convergence speed and accuracy of the algorithm. The experimental results show that the

evaluation index of the algorithm is the best, RMSE is 0.67%, and the SOC estimation is more accurate. It is

shown that the algorithm has strong robustness and fast convergence. It should be noted that the ambient

temperature on estimation performance will be a necessary study, which can be considered as our future work.
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Fig1. Runtime-based fractional-order battery model

Fig 2 The flow chart of SOC estimation based on residual sequence adaptive fractional-order unscented Kalman filter

Fig 3 The flow chart of the adaptive fractional-order unscented particle filter algorithm
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Fig 4 The combined estimator of full-parameter identification and SOC

Fig. 5 The entire battery test bench

(a) Dynamic current profile (b) Voltage profiles
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Fig. 6 Experimental data of UDDS condition

(a) Ohmic internal resistance (b) Open-circuit voltage

(c) Polarization internal resistance (d) Constant phase element
Fig 7 The full-parameter identification results

(a) Comparison voltage between the model output and the
measured

(b) Error between the model output voltage and the
measured voltage

Fig 8 Accuracy verification of UDDS

(a) Comparison of SOC based on PF with different particle
numbers

(b) Comparison of SOC error based on PF with
different particle numbers
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(c) Comparison of SOC based on UPF with different
particle numbers

(d) Comparison of SOC error based on UPF with
different particle numbers

Fig 9 SOC estimation comparison based on four algorithms

(a) Comparison of SOC based on two algorithms (b) Comparison of SOC error based on two algorithms

(c) Comparison of voltage based on two algorithms (d) Comparison of voltage error based on two algorithms
Fig 10 Performance comparison based on two algorithms
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